

Aalen University (Germany)

Agenda

- Motivation & Background
- Motion Capture
- Live Motion Capture
 - Markerless Motion Capture
- Experiments
- Next steps

Motivation

- Motion Capture
 - Relevant and interesting topic in Higher Education
 - Creation of own 3D educational films and 3D trick films
- Live Motion Capture
 - Evaluation of movement detection
 - Innovative human-computer-interaction in virtual 3D environments

Motion Capture

- Fields of application
 - Medicine (gait and movement analysis in orthopaedics, ...)
 - Sport (biomechanics, training optimizing: golf, tennis, swimming, cycling, skiing, ...)
 - Entertainment business (video games, film, music video, promotional clips, ...)
 - Etc.
- Kinds of motion capture
 - Mechanical (for example exoskeleton)
 - Magnetic
 - Optical
 - Active
 - Passive
 - (and more)
- Disadvantages (until recently)
 - Elaborate post processing
 - Limitation through markers

Live Motion Capture

- With markers:
 - Improved hardware and algorithms
- Without markers:
 - Live tracking with the Kinect[®]
 - Live tracking with a depth perception video camera
 - VR tracker (3D applications)
 - Example: tracking of a teacher in a virtual classroom

Depth Perception Video Camera: Fundamental Functionality

False colour of the depth stream

Source: [1]

Other possibility: ,Time-of-Flight' [2]; used for example in Lidar sensors

Detection of persons

- Confidence Map
- Part affinity field (extraction of parts of the body)
- Machine Learning

Identification of persons

Experiments

- Very promising results
- Transfer of the lecture's movement into a virtual classroom

Results and Future Work

- Result:
 - Promising live motion capturing via depth video camera
- Further (planned) topics:
 - 3D e-learning
 - Live generating of trick films
 - Evaluation of the locomotion of the avatars in 3D applications
 - Using VR tracker for live motion capture in 3D applications
 - Minimizing kinetosis?

Concluding Remarks

Acknowledgments

 Part of the work is funded through the 'HUMUS' Program (2020) of the Federal State of Baden Wuerttemberg (Germany).

- Thanks to
 - Nicolas Schoen (student) and Camil Pogolski (research assistant)
 - prophysics AG (Zurich/ Switzerland, namely Martin Loehrer): presentation of commercial live motion capture

References

- [1] Shuantu Liu, Dedong Gao, Wang Peng, Xifeng Guo, Jing Xu, Du-Xin Liu: 'A Depth-Based Weighted Point Cloud Registration for Indoor Scene' in Sensors 18(11):3608, October 2018
- [2] Sebastian Schuon, Christian Theobalt, James Davis, Sebastian Thrun: 'High-Quality Scanning Using Time-of-Flight Depth Superresolution', 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, Anchorage, AK, USA, 23- 28 June 2008
- [3] Zhe Cao, Thomas Simon, Shih-En Wei, Yaser Sheikh: 'Realitime Multi-Person 2D Pose Estimation using Part Affinity Fields', arXiv:1611.08050

Thank you for your attention

Contact:

Prof. Dr. Carsten Lecon Aalen University (Germany) Carsten.Lecon@hs-aalen.de

