Numerical Study of Flow and Heat Transfer in a Curved Square Duct with Longitudinal Triangular Rib Using \(\text{Al}_2\text{O}_3/\text{Water} \) Nanofluid

Fatih Celen
Gazi University
Turkey

Omer Evran
Gazi University
Turkey

Oguz Turgut
Professor
Gazi University
Turkey

Burak Tigli
Gazi University
Turkey
An Introduction to
ATINER's Conference Paper Series

ATINER started to publish this conference papers series in 2012. It includes only the papers submitted for publication after they were presented at one of the conferences organized by our Institute every year. This paper has been peer reviewed by at least two academic members of ATINER.

Dr. Gregory T. Papanikos
President
Athens Institute for Education and Research

This paper should be cited as follows:

Numerical Study of Flow and Heat Transfer in a Curved Square Duct with Longitudinal Triangular Rib Using Al₂O₃/Water Nanofluid

Fatih Celen
Omer Evran
Oguz Turgut
Burak Tigli

Abstract

Flow and heat transfer characteristics in curved ducts are different from that of straight ducts. A numerical study of a steady and three dimensional laminar flow in a 180° curved square duct with longitudinal isosceles triangular rib has been conducted to investigate the effects of rib height, Dean number and volume fraction of Al₂O₃/water nanofluid on flow and heat transfer characteristics. ANSYS Fluent 17.0 commercial program is used for numerical simulation. Study is implemented for six Dean numbers changing from 250 to 1500, three different rib heights, and eight volume fractions varying from 0% to 5%. Velocity and temperature regions, heat transfer coefficient (h), pressure loss (ΔP), and thermal performance factor (η) are investigated. Present results are compared with the literature results. It is seen that present results are in good agreement with the results of literature. Results show that Dean number (De), rib height (H) and volume fraction of nanofluid (vof) affect the heat transfer coefficient and pressure drop. It is seen that heat transfer coefficient may be increased by 59.0% for water as the working fluid when longitudinal isosceles triangular rib is used in curved square duct compared to ribless duct. Heat transfer coefficient may also be augmented by 30.8% using nanofluid as the working fluid in a curved square duct with rib. Results show that using longitudinal isosceles triangular rib in a curved square duct is advantageous.

Keywords: Curved, Nanofluid, Numerical study, Rib, Square duct.
Nomenclature

\(a\) edge length of the curved square duct, m
\(b\) length of side wall of isosceles triangle, m
\(c_p\) specific heat at constant pressure, J\(\cdot\)kg\(^{-1}\)\(\cdot\)K\(^{-1}\)
\(D_h\) hydraulic diameter, m
\(De\) Dean number, -
\(f\) Darcy friction factor, -
\(h\) heat transfer coefficient, W\(\cdot\)m\(^{-2}\)\(\cdot\)K\(^{-1}\)
\(H\) rib height, m
\(k\) thermal conductivity, W\(\cdot\)m\(^{-1}\)\(\cdot\)K\(^{-1}\)
\(L\) duct length, m
\(Nu\) Nusselt number, -
\(\Delta p\) pressure drop along the duct, Pa
\(q^*\) heat flux, W\(\cdot\)m\(^{-2}\)
\(P\) pressure, Pa
\(Pr\) Prandtl number, -
\(R\) curvature radius, m
\(Re\) Reynolds number, -
\(T\) temperature, K
\(u, v, w\) velocity components in x, y, z directions, m\(\cdot\)s\(^{-1}\)
\(V\) velocity, m\(\cdot\)s\(^{-1}\)
\(vof\) volume fraction, -
\(x, y, z\) coordinates, m

Greek Letters

\(\eta\) thermal efficiency, -
\(\mu\) dynamic viscosity, kg\(\cdot\)m\(^{-1}\)\(\cdot\)s\(^{-1}\)
\(\theta\) curvature angle, \(^{\circ}\)
\(\rho\) density, kg\(\cdot\)m\(^{-3}\)

Subscript

bf base fluid
i inlet
m mean
nf nanofluid
o ribless duct
p particle
w wall
Introduction

Flows in curved ducts are different in nature from the flows in straight ducts. Flow with curvature is encountered in many engineering applications. Curved ducts with various cross sections are employed in many industrial devices such as internal combustion heat engine passages, rocket engines, solar collectors, turbomachinery, heat exchangers, chemical reactors, internal cooling system of gas turbines, centrifugal pumps, and air conditioning and refrigeration systems (Silva et al., 1999; Papadopoulos and Hatzikonstantinou, 2004; Ko, 2006; Liang et al., 2013; Ojha and Joshi, 2014).

In order to increase heat transfer rates, nanoparticles such as Al$_2$O$_3$, TiO$_2$, SiO$_2$, CuO, Fe$_2$O$_3$, Fe$_3$O$_4$ and so on are added to the basefluid such as water, ethylene glycol, oil and others. To augment heat transfer, fins are also used on the surfaces of the ducts.

Many researchers have investigated the laminar flow in a curved square duct with or without nanofluid as the working fluid. A numerical study was carried out by Cheng et al. (1975) in thermal entrance region of a curved square duct for different fluids (Pr=0.1, 0.7, 5, 10.05 and 500) and Dean numbers changing from 0 to 488 at both constant surface temperature and constant heat flux boundary conditions. The ratio of the radius of curvature to the height of a duct, i.e. curvature ratio R/a, was taken as 4-100, and curvature angle was not given accurately. They proposed a correlation which gives the Nusselt number. Humphrey et al. (1977) conducted both an experimental and numerical study of laminar flow in a 90° bend square duct (40 mm × 40 mm) with the mean radius of 92 mm and radius ratio, the ratio of mean radius to the edge length of the duct R/a, of 2.3 using water as the working fluid for the Dean number of 368. Corresponding Reynolds number is 416. Yee et al. (1980) numerically studied the heat transfer for steady and laminar flow through a 90° curved square duct. They investigated the effects of duct geometry and entrance conditions which are velocity and temperature on heat transfer. Chilukuri and Humphrey (1981) numerically studied the incompressible laminar flow in a 90° curved square duct using finite difference method. They considered the buoyancy effects in their numerical study. Hille et al. (1985) experimentally investigated the development of laminar flow in a 180° curved square duct with a curvature ratio of 6.45. Laser Doppler Anemometry measurements were conducted. Soh (1988) presented a numerical study of developing laminar flow in a 180° curved square duct using alternating direction implicit (ADI) finite difference method for the curvature ratios a/R, the ratio of the edge length of the duct (hydraulic diameter of the duct) to the curvature radius, of 1/6.45 and 1/2.3. Numerical study was investigated for two different Reynolds numbers 574 and 790. Hwang and Chao (1991) studied numerically the laminar forced convection through an isothermal curved square duct under both thermally and hydrodynamically fully developed boundary conditions. They performed their numerical study for two different fluids (Pr=0.7 and 7), and Dean number was varied between 0 and 10⁶. An experimental and numerical study was conducted by Bara et al. (1992) for fully developed, incompressible, laminar and Newtonian fluid in a smooth curved square duct for the curvature ratio of 15.1. Dean numbers used were 125, 137 and
150. Chung and Hyun (1992) numerically investigated the developing laminar flow in a 90° curved square duct for both constant temperature and constant heat flux boundary conditions. Mees et al. (1996) conducted an experimental and numerical study of the incompressible, steady, and developing laminar flow for Newtonian fluid in a 270° curved square duct with the curvature ratio, the ratio of the radius of the curvature to the edge length of the duct \(R/a \), of 15.1 for Dean number changing from 200 to 600. Radius of the curvature \(R \) was taken as 19.17 cm. Silva et al. (1999) studied numerically the incompressible, steady and fully developed laminar flow in curved elliptic or rectangular ducts for the aspect ratio varying between 0.7 and 1.4 for constant wall temperature boundary condition. Dean number was varied between 30 and 400. Papadopoulos and Hatzikonstantinou (2004) numerically examined the steady and fully developed laminar flow in a curved square duct with internal longitudinal fins using SIMPLE algorithm. Papadopoulos and Hatzikonstantinou (2005) numerically examined the incompressible and fully developed laminar flow in a curved square duct with four internal longitudinal fins using alternating direction implicit method (ADI). Tsai and Sheu (2007) studied the incompressible three dimensional laminar flow in a 90° curved square duct with curvature ratio, i.e. the ratio of curvature radius to the edge length of duct, of 2.3 for Reynolds number of 790. Kucuk and Asan (2009) numerically examined the steady, incompressible and both thermally and hydrodynamically fully developed laminar flow in eccentric annular curved square duct. Air was used as the working fluid (Pr=0.7). Mondal et al. (2009) numerically investigated the flow instability through a curved square duct. Kucuk (2010) presented a numerical study of the entropy generation for steady, incompressible thermally and hydrodynamically fully developed laminar flow in eccentric annular curved square duct for the annulus dimension ratios of 2.36, 2.9, 3.8 and 5.5. Numerical study was conducted for the Dean numbers varying from 3.6 to 207. Onur et al. (2011) carried out a numerical study to investigate the steady, three dimensional laminar flow in a 180° curved square duct for air at constant wall temperature boundary condition. Dean number was changed between 165 and 1450. Corresponding Reynolds number is between 250 and 2200. Sasmito et al. (2011) numerically investigated the laminar heat transfer enhancement in coiled square tubes for water-Al\(_2\)O\(_3\) and water-CuO nanofluids. Entropy generation for temperature variable viscosity in a laminar flow in a curved square microchannel was numerically examined by Guo et al. (2012) for constant wall temperature boundary condition. Shabestari et al. (2012) numerically studied the isothermal, incompressible, steady and fully developed laminar flow in a curved square duct. Soltanipour et al. (2012) carried out a numerical study in a curved square duct with longitudinal rectangular rib on the inner surface of the outer wall of the curved duct for laminar flow. Study was conducted for three dimensional, steady and incompressible laminar flow. Al\(_2\)O\(_3\)/water nanofluid was used as the working fluid. Almeida Vilela (2013) conducted a numerical and experimental study of fully developed laminar flow inside a 180° curved square duct. Heris et al. (2013) conducted an experimental study of laminar convective heat transfer using Al\(_2\)O\(_3\)/water nanofluid in a curved square duct. Islam and Mondal (2013)
numerically examined the study of fully developed, incompressible and two dimensional laminar flow in a curved square duct for the Dean number changing from 0 to 6000. Numerical study was carried out for the curvature 0.001 to 0.5. Liang et al. (2013) carried out a numerical study for unsteady, incompressible, fully developed, and three dimensional laminar flow in a 90° curved circular and square duct. Vilela (2013) both experimentally and numerically investigated three dimensional laminar flow in a 180° curved square duct using finite volume method for the Dean number varying from 100 to 2500. Ma et al. (2014) conducted a numerical study to investigate the laminar and turbulent flows for non-Newtonian fluid in a curved square duct. Ojha and Joshi (2014) numerically investigated the steady three dimensional laminar flow in a 120° and 160° curved square ducts with the curvature ratio of 2.3. Air was used as the working fluid in their study. Numerical study was conducted for four different Reynolds numbers 227, 455, 1061, and 2274 (corresponding Dean number 150, 300, 700, and 1500). Farsani and Noodooshan (2015) numerically investigated the laminar flow and heat transfer in 90° curved square duct using nanofluid of aluminum oxide and water (Al_2O_3). Razavi et al. (2015) carried out a numerical study to investigate the second law analysis of laminar forced convection in a rotating 180° curved square duct. Helal et al. (2016) conducted a numerical study to investigate the two dimensional laminar flow and heat transfer through a 180° rotating curved square duct. Liu et al (2018) numerically investigated the laminar forced convective heat transfer in developing and fully developed regions of a curved square duct using Al_2O_3-water nanofluids.

Heat transfer and fluid flow in curved non-square ducts for laminar flow have also been investigated using nanofluids by many investigators (Chen and Zhang, 2003; Nobari and Gharali, 2006; Akbarinia and Behzadmehr, 2007; Akbarinia, 2008; Nobari et al., 2009; Nobari and Mehrabani, 2010; Yang et al., 2011; Nobari et al., 2012; Kahani et al., 2014; Hayat et al., 2016; Ahmed and Akbar, 2017; Barik and Nayak, 2017).

Literature survey shows that there is a lack of knowledge on the topic of laminar flow in a curved square duct with rib for nanofluids. Therefore, in this study, a numerical analysis of steady, incompressible three dimensional laminar flow in a curved square duct with longitudinal isosceles triangular rib has been carried out using Al_2O_3/water nanofluid. The novelty of this study is the investigation of laminar flow and heat transfer characteristics in a 180° curved square duct with longitudinal isosceles triangular rib placed on the inner surface of the outer wall for Al_2O_3/water nanofluid. Examined parameters are the rib height, the Dean number and the volume fraction of nanofluid. Rib heights used in this study are $H=0.112a$, $0.189a$, and $0.283a$, i.e. $b/a=1.5/10$, $2.14/10$, $3/10$. Dean number is varied between 250 and 1500. Corresponding Reynolds number is between 338 and 2122. The volume fraction of nanofluid is changed from 0% to 5%.
Description of the Physical Problem

The curved square duct with longitudinal isosceles triangular rib and coordinate system used in this numerical study are shown in Figure 1. Isosceles triangular sectioned rib is placed longitudinally on the inner surface of the outer wall of the curved square duct. Constant heat flux is applied to the outside of the outer wall of the curved square duct. Other surfaces of the curved duct are insulated. In Figure 1, a, b, and R are the edge length of the square curved duct, length of side wall of isosceles triangle, and the curvature radius, respectively. The values of a and R are taken as 56 mm and 99 mm, respectively. θ is the curvature angle or streamwise length, measured from inlet section. $\theta=0^\circ$ and $\theta=90^\circ$ designate the inlet and outlet sections, respectively. Base length and height of the triangular rib are taken as $0.20a$ and H, respectively. That is, length of side wall of isosceles triangular rib, b, is chosen as $0.15a$, $0.214a$, and $0.30a$. Therefore, numerical study has been carried out for three different rib heights $H=0.112a$, $0.189a$, $0.283a$, for six different Dean numbers $De=250$, 500, 750, 1000, 1250, 1500, and for eight different volume fractions of nanofluid $vof=0$, 0.1, 0.2, 0.5, 1, 2.5, 4, 5%.

Figure 1. Duct Geometry and Coordinate System

Steady, three dimensional, viscous incompressible laminar flow with negligible buoyancy effects are assumed for this numerical study. Radiative transport and viscous dissipation are considered to be negligibly small and dropped from the energy equation. Physical properties of the fluid are assumed to be constant. Therefore, with these assumptions the equations of continuity and momentum equations for flow in 180° curved square duct are (Ward-Smith, 1980).

Conservation of mass:

$$\frac{R}{R+y} \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} + \frac{v}{R+y} = 0$$

(1)

Conservation of momentum:
\[
\frac{R}{R + y} \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} + \frac{uv}{R + y} = \frac{1}{\rho} \left[\frac{R}{R + y} \left(-\frac{\partial P}{\partial x} + \mu \left(\frac{R}{R + y} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) \right) + \frac{1}{R + y} \left(\frac{2R}{(R + y)^2} \frac{\partial v}{\partial x} - \frac{u}{(R + y)^2} \right) \right]
\]
\]
\[\text{(2a)}\]

\[
\frac{R}{R + y} \frac{\partial v}{\partial x} + v \frac{\partial v}{\partial y} + w \frac{\partial v}{\partial z} - \frac{u^2}{R + y} = \frac{1}{\rho} \left[-\frac{\partial P}{\partial y} + \mu \left(\frac{R}{R + y} \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} + \frac{\partial^2 v}{\partial z^2} \right) \right] + \frac{1}{R + y} \left[\frac{\partial v}{\partial y} - \frac{2R}{R + y} \frac{\partial u}{\partial x} - \frac{v}{R + y} \right]
\]
\]
\[\text{(2b)}\]

\[
\frac{R}{R + y} \frac{\partial w}{\partial x} + v \frac{\partial w}{\partial y} + w \frac{\partial w}{\partial z} = \frac{1}{\rho} \left[-\frac{\partial P}{\partial z} + \mu \left(\frac{R}{R + y} \frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} + \frac{1}{R + y} \frac{\partial w}{\partial y} \right) \right]
\]
\]
\[\text{(2c)}\]

\[
\frac{R}{R + y} \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} + w \frac{\partial T}{\partial z} = \frac{k}{\rho c_p} \left[\left(\frac{R}{R + y} \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} + \frac{1}{R + y} \frac{\partial T}{\partial y} \right) \right]
\]
\]
\[\text{(3)}\]

where \(\rho\) is the density, \(P\) is the pressure, \(\mu\) is the dynamic viscosity, \(c_p\) is the specific heat at constant pressure, \(k\) is the thermal conductivity, and \(T\) is the temperature.

Fluid enters the curved square duct with uniform velocity \(V_i\) and temperature \(T_i\) at \(\theta=0^\circ\). Alternatively, fully developed velocity profiles can be applied at the duct inlet depending on the desired type of inlet boundary conditions (Darus and Fatt, 2008). No slip boundary conditions are applied to the walls of the curved duct and rib. Constant heat flux boundary condition is applied to the outer wall of the duct. Adiabatic boundary condition is applied to the bottom, inner and top walls of the curved square duct.

The length of the side edge of the isosceles triangular rib changes as the height of the isosceles triangular rib changes. In order to see the effect of the rib height on flow and heat transfer, the heated surface area is kept at constant. Therefore, it is assumed that the surfaces of rib are adiabatic. Atmospheric boundary condition is applied to the outlet section, i.e. at \(\theta=180^\circ\). Fluid properties are assumed to be constant and taken at the inlet temperature.

Reynolds (Re) and Dean (De) numbers are expressed, respectively, as (Soltanipour et al., 2012).
Re = \rho V_i D_h / \mu \\
(4)

De = Re(D_h / R)^{0.5} \\
(5)

In Eqs. (4) and (5), \rho is the density, \(V_i\) is the inlet velocity of the fluid to the curved square duct, \(D_h\) is the hydraulic diameter of the curved square duct and defined as four times the wetted area to the perimeter, \(\mu\) is the dynamic viscosity, and \(R\) is the curvature radius. Dean number changes from 250 to 1500 (corresponding Reynolds number is between 338 and 2122). Average heat transfer coefficient in the curved square duct is defined as

\[h = \dot{q}^* / (T_w - T_m) \] \\
(6)

where \(h\) is the heat transfer coefficient, \(\dot{q}^*\) is the heat flux applied to the outer wall of the curved square duct, \(T_w\) is the wall temperature, and \(T_m\) is the bulk temperature of the fluid. Average Darcy friction (f) factor and average Nusselt number (Nu) are given, respectively, as

\[f = 2(\Delta P / L)(D_h / \rho V_i^2) \] \\
(7)

\[Nu = hD_h / k \] \\
(8)

where \(\Delta P\) is the pressure drop along the curved square duct, \(L\) is the duct length, and \(k\) is the thermal conductivity of the fluid, respectively. Thermal efficiency is defined as

\[\eta = (Nu / Nu_o) / (f / f_o)^{1/3} \] \\
(9)

here \(Nu_o\) and \(f_o\) are the Nusselt number and Darcy friction factor for the ribless duct, respectively.

Thermophysical Properties of the Al₂O₃/Water Nanofluid

Water is used as base fluid. Al₂O₃ is employed as the nanoparticles in base fluid. The volume fraction of particle in nanofluid is changed from 0% to 5%. Single phase model is assumed, and the following equations are used to compute the density \(\rho\), dynamic viscosity \(\mu\), specific heat at constant pressure \(c_p\), and thermal conductivity \(k\) of the Al₂O₃/water nanofluid (Soltanipour et al., 2012):
\[\rho_{nf} = (1 - \nu_{of})\rho_{bf} + \nu_{of} \cdot \rho_p \]
(10)

\[\mu_{nf} = \mu_{bf} (123 \cdot \nu_{of}^2 + 7.3 \cdot \nu_{of} + 1) \]
(11)

\[c_{p, nf} = (1 - \nu_{of})c_{p, bf} + \nu_{of} \cdot c_{p, p} \]
(12)

\[k_{nf} = k_{bf} (4.97 \cdot \nu_{of}^2 + 2.72 \cdot \nu_{of} + 1) \]
(13)

where the subscripts nf, bf and p indicate the nanofluid, the base fluid, and the particle, respectively.

Meshing and Numerical Solution Procedure

Numerical study is carried out using commercial program ANSYS Fluent 17.0. ANSYS Fluent 17.0 uses the control volume analysis to solve fluid flow problems. Nonuniform tetrahedral meshes with inflation near the walls are used in the numerical study. Figure 2 shows the typical mesh distribution on three dimensional geometry. Typical mesh distribution on the cross section of the square duct with triangular rib is also seen in Figure 2. As can be seen in Figure 2, a dense mesh distribution is used near the walls of the curved square duct and near the walls of the triangular rib. Mesh independence study for Dean number De=1500 which is the highest Dean number used in this numerical study is conducted to reduce the influence of the number of meshes on the computational results. The mesh number for which average Nusselt number and average Darcy friction factor in curved square duct does not change significantly is taken as the optimum mesh number. This optimum mesh number is used for other Dean numbers in the numerical analysis at the same duct geometry. Similarly, mesh optimization is carried out when the duct geometry and the volume fraction of nanofluid are changed. No convergence problem is encountered in numerical studies. Steady segregated solver is used. The standard SIMPLE-algorithm is employed for pressure-velocity coupling. The second order upwind scheme is chosen for the convective terms. Iterations are continued until the residual falls below \(10^{-5}\) for mass and momentum equations while energy equation is iterated until the residual falls below \(10^{-6}\).
Results and Discussion

Verification of Numerical Study

The numerical study of Soltanipour et al. (2012) was repeated here to ensure the accuracy of the present numerical study. Numerical study was carried out for 180° curved square duct with a longitudinal isosceles triangular rib placed on the inner surface of the outer wall of the curved duct. The ratio of the rib height to the side length of the duct H/a is equal to 1/5. Dean number used was chosen to be $De=500$ and $De=1500$, and the volume fraction of nanofluid was taken as $vof=2.5\%$, 5%, 7.5%, and 10%. Figure 3 shows the comparison of the present results with the results of Soltanipour et al. (2012). As can be seen in Figure 3a and 3b, the heat transfer coefficient and pressure drop ratios of the ribbed curved duct to the smooth (ribless) curved square duct are plotted as a function of the volume fraction of the nanofluid. In Figure 3, the subscripts nfr and bfs designate the nanofluid for curved ribbed duct and base fluid for smooth curved duct, respectively. It is seen that the results of present study are in good agreement with the results of Soltanipour et al. (2012). Validation can be carried out by conducting an experimental study as well.

In order to see the effects of nanofluids on friction factor, friction factor for pressure loss given in Figure 3b for $De=1500$ and $De=500$ is plotted in Figure 3c as a function of the volume fraction of nanofluid. As can be seen from Figure 3c, friction factor increases with increasing volume fraction of nanofluid at constant Dean number. It is also seen that friction factor decreases with increasing Dean number at constant volume fraction of nanofluid. It is found that friction factor for $De=500$ and $De=1500$ at $vof=10\%$ increases by 1047% and 906%, respectively, when compared with curved duct for $vof=0\%$ (i.e. without nanofluid).
Results of Curved Duct With Longitudinal Isosceles Triangular Rib

After verifying the numerical method used in this study, the numerical study of laminar flow in a curved square duct with a longitudinal isosceles triangular rib placed on the inner surface of the outer wall of the curved square duct has been carried out. The parameters used are the Dean number (De), the height of the isosceles triangular rib (H), and the volume fraction of nanofluid (vof). Dean numbers used are 250, 500, 750, 1000, 1250, and 1500. Three different rib height is used, i.e. H=0.112a, 0.189a, and 0.283a. Numerical study has been implemented for eight volume fractions of nanofluid vof=0, 0.1, 0.2, 0.5, 1, 2.5, 4, 5%.

Velocity and temperature contours for water, i.e. vof=0%, are seen in Figure 4 for De=250 at three different rib heights H=0.112a, 0.189a, and 0.283a from left to right, respectively. In Figure 4, velocity and temperature contours are seen from top to bottom, respectively. As can be seen in Figure 4, rib height affects the velocity and temperature fields in duct. It is seen that flow becomes symmetric with respect to the plane z=0. It is also seen that velocity magnitude changes from minimum value near the wall due to no slip boundary condition to maximum value for fluid near the middle of the cross section of the duct. It is seen that important temperature rise
happens in a thin region close to the outer wall which is exposed to the external heat flux. It is also seen that higher temperature regions are coincident with the low velocity regions near the outer wall. As seen from Figure 4, more fluid region is heated near the outer surface as the rib height increases. Warming of the fluid in the larger region results in higher heat transfer.

Figure 4. Typical velocity and temperature contours for water at De=250. From top to bottom: velocity and temperature contours, respectively

![Velocity and Temperature Contours](image)

In order to see the effect of the Dean number on velocity and temperature fields, typical velocity and temperature contours are plotted in Figure 5 at three different Dean numbers De=250, 500 and 750 for $H=0.283a$ and volume fraction of $vof=1\%$. From top to bottom, velocity and temperature contours, respectively, are seen in Figure 5. As can be seen in Figure 5, Dean number affects the velocity and temperature fields in the duct. Results show that velocity magnitude increases with increasing Dean number as expected, but temperature magnitude of fluid decreases.

Typical velocity and temperature contours for De=250 and $H=0.283a$ are shown in Figure 6 in order to see the effect of the volume fraction of nanofluid on velocity and temperature fields. It is seen that the volume fraction of nanofluid affects the velocity and temperature regions.
Figure 5. Typical Velocity and Temperature Contours at vof=1% for H=0.283a. From Top to Bottom: Velocity and Temperature Contours, Respectively

De=250 De=750 De=1500

Figure 6. Typical Velocity and Temperature Contours at De=250 for H=0.283a. From Top to Bottom: Velocity and Temperature Contours, Respectively

vof=0% vof=1.0% vof=5.0%

Typical velocity and temperature contours are shown in Figure 7 at $\theta=90^\circ$ and $\theta=180^\circ$ (outlet section), respectively, for $H=0.283a$ and $De=250$ at $vof=1\%$. It is seen that velocity and temperature boundary layers grow in the flow direction. In other words, more fluid is heated when the fluid flows in the axial direction. It is seen that the high velocity zone transfers from the
inner side to the outer side as the flow develops from inlet plane to the outlet plane due to the influence of centrifugal force.

Figure 7. Typical Velocity and Temperature Contours at De=250 for H=0.283a and \(\theta = 90^\circ \) and \(\theta = 180^\circ \). From Top to Bottom: Velocity and Temperature Contours, Respectively

The effect of the volume fraction of nanofluid (vof) and Dean number (De) on heat transfer coefficient is shown in Figure 8 at two different rib heights \(H=0.112a \) and \(H=0.283a \), respectively. As can be seen in Figure 8, heat transfer coefficient increases when the volume fraction of nanofluid increases at a constant Dean number. It is also seen that heat transfer coefficient increases when Dean number increases at a constant volume fraction of nanofluid. That is, the volume fraction of nanofluid and Dean number have an important factor on the heat transfer coefficient in 180\(^\circ\) curved square duct with isosceles triangular rib on the inner surface of the outer wall of curved duct. It is seen that heat transfer coefficient for \(H=0.112a \) and \(H=0.283a \) increases about 30\% and 31\%, respectively, for De=1500 and vof=5\% when compared with vof=0\% (i.e. without nanofluid). Likewise, heat transfer coefficient for De=250 and De=1500 increases about 29\% and 31\%, respectively, for \(H=0.283a \) and vof=5\% when compared with vof=0\% (i.e. without nanofluid).
In order to see the effect of triangular rib height on heat transfer coefficient, heat transfer coefficient is plotted as a function of the volume fraction of nanofluid in Figure 9 at three different rib heights for two different Dean numbers. It is seen that heat transfer coefficient increases when rib height increases at a constant volume fraction of nanofluid. In other words, rib height affects the heat transfer coefficient. It is also seen that heat transfer coefficient increases with increasing volume fraction of nanofluid at a constant rib height. That is, volume fraction of nanofluid influences heat transfer coefficient. It is seen that heat transfer coefficient for \(H=0.112a \) and \(H=0.283a \) increases by 29.2% and 29%, respectively, for \(De=1500 \) and \(vof=5\% \) when compared with \(vof=0\% \) (i.e. without nanofluid).

Likewise, the effect of volume fraction of nanofluid and Dean number on pressure drop is shown in Figure 10 at two different rib heights \(H=0.112a \) and \(0.283a \), respectively. It is seen that pressure drop increases when volume fraction of nanofluid increases at a constant Dean number. In addition, pressure drop in the curved ribbed-square duct increases when Dean number increases at a constant volume fraction of nanofluid. That is, volume fraction of nanofluid and Dean number affect the pressure drop in a curved ribbed-square duct. It is seen that pressure drop for \(H=0.112a \) and \(H=0.283a \) increases by 144% and 145%, respectively, for \(De=1500 \) and \(vof=5\% \) when compared with \(vof=0\% \) (i.e. without nanofluid).
To see the effect of rib height on pressure drop, pressure drop along the curved ribbed-square duct is plotted as a function of volume fraction of nanofluid in Figure 11 at three different rib heights and at two different Dean numbers $De=250$ and 1500, respectively. Results show that rib height affects the pressure drop in the curved duct. That is, pressure drop in the curved duct increases when rib height increases at a constant volume fraction of nanofluid for both Dean numbers. It is also seen that pressure drop increases when volume fraction of nanofluid increases at constant rib height for two Dean numbers. It is seen that pressure drop for $De=250$ and $De=1500$ increases by 144% and 145%, respectively, for $H=0.283a$ and $vof=5\%$ when compared with $vof=0\%$ (i.e. without nanofluid).
Heat transfer and pressure drop values for two Dean numbers De=250 and 1500 are given in Table 1 for curved smooth (ribless) duct and for curved ribbed duct for which $H=0.283a$ at two volume fractions of nanofluid, $vof=0\%$ and 5\%. Results show that both heat transfer and pressure drop increases when a longitudinal isosceles triangular rib is placed on the inner surface of the outer wall of the curved square duct. It is also seen that heat transfer coefficient increases with increasing Dean number.

<table>
<thead>
<tr>
<th>De</th>
<th>h_{bs} (vof=0%)</th>
<th>h_{nfr} (vof=0%)</th>
<th>ΔP_{bs} (vof=0%)</th>
<th>ΔP_{nfr} (vof=0%)</th>
<th>Δh_{bs} (vof=0%)</th>
<th>Δh_{nfr} (vof=0%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>179.47</td>
<td>285.29</td>
<td>368.66</td>
<td>0.0443</td>
<td>0.0714</td>
<td>0.1739</td>
</tr>
<tr>
<td>1500</td>
<td>465.19</td>
<td>547.80</td>
<td>716.69</td>
<td>0.6441</td>
<td>0.9546</td>
<td>2.3340</td>
</tr>
</tbody>
</table>

Firstly, attention will be given to the heat transfer coefficient. Results show that heat transfer coefficient increases by 59.0\% and 17.8\% for De=250 and 1500, respectively, at $vof=0\%$ when longitudinal isosceles triangular rib with $H=0.283a$ is used in curved square duct compared to ribless duct. It is also seen that heat transfer coefficient for curved ribbed-square duct increases by 29.2\% and 30.8\% for De=250 and 1500, respectively, at $H=0.283a$ when the volume fraction of nanofluid changes from 0\% to 5\%. In other words, heat transfer coefficient increases by 105.4\% and 54.1\% for De=250 and 1500, respectively, when rib with $H=0.283a$ and nanofluid with $vof=5\%$ are used in a curved duct compared to curved ribless duct.

With regard to pressure drop, pressure drop increases by 61.2\% and 48.2\% for De=250 and 1500, respectively, at the volume fraction of nanofluid $vof=0\%$ when longitudinal rib with $H=0.283a$ is used in curved square duct compared to ribless duct. In addition, pressure drop increases by 143.6\% and 144.5\% for De=250 and 1500, respectively, for the rib height $H=0.283a$ when volume fraction of nanofluid changes from $vof=0\%$ to 5\%
for curved ribbed-square duct. That is, pressure drop increases by 262.4% when isosceles triangular rib with $H=0.283a$ and nanofluid with $vof=5\%$ are used in a curved square duct compared to curved ribless duct.

Increasing of heat transfer is advantageous while increasing of pressure drop is disadvantageous. In order to see that whether using a longitudinal isosceles triangular rib in a curved square duct is reasonable or not, thermal efficiency is plotted as a function of volume fraction of nanofluid in Figure 12 at four different Dean numbers for three different rib heights. Results indicate that thermal efficiency is greater than unity at all rib heights and at all Dean numbers. In other words, it can be said that heat transfer dominates the friction factor at all Dean numbers and at all rib heights.

Figure 13 shows the thermal efficiency as a function of volume fraction of nanofluid at three rib heights $H=0.112a$, 0.189a, and 0.283a for three different Dean numbers $De=250$, 500 and 1500. It is seen that thermal efficiency is greater than unity for all cases. That is, heat transfer dominates the friction. Therefore, it can be said that using a longitudinal isosceles triangular rib on the inner surface of the outer wall of curved square duct is reasonable.

Figure 12. Thermal Efficiency Versus Volume Fraction of Nanofluid at Three Different Rib Heights

Figure 13. Thermal Efficiency Versus Volume Fraction of Nanofluid at Three Different Dean Numbers

Conclusions

The novelty of this study is the numerical investigation of laminar flow and heat transfer characteristics in a 180° curved square duct with longitudinal isosceles triangular rib placed on the inner surface of the outer wall for Al$_2$O$_3$/water nanofluid. Parameters examined in this study are the Dean
number, the volume fraction of nanofluid, and the rib heights. A commercial program called ANSYS Fluent 17.0 is used in the numerical analysis. The principle conclusions are as follows for $De=250-1500$, $vof=0\%-5\%$ and $H=0.112a$, $0.189a$, and $0.283a$:

(1) Results show that heat transfer coefficient and pressure drop increase when the volume fraction of nanofluid, Dean number and rib height increase.

(2) Results show that heat transfer coefficient increases by 59\% for water as the working fluid ($vof=0\%$) when longitudinal isosceles triangular rib is used on the inner surface of the outer wall of a 180° curved square duct compared to ribless duct.

(3) Heat transfer coefficient may be increased 105\% when using nanofluid in a 180° curved square duct with longitudinal isosceles triangular rib when compared to curved ribless duct.

(4) Heat transfer coefficient may also be augmented about 31\% using nanofluid in a 180° curved square duct with longitudinal isosceles triangular rib when compared with the water without nanofluid.

(5) Pressure drop increases by 61\% when a longitudinal isosceles triangular rib is used on the inner surface of the outer wall of 180° curved square duct compared to curved ribless duct when water is used as the working fluid, i.e. $vof=0\%$.

(6) Pressure drop increases by 145\% using nanofluid in a 180° curved square duct with longitudinal isosceles triangular rib when compared with $vof=0\%$ (i.e. without nanofluid).

(7) Pressure drop increases by 262\% using nanofluid when a longitudinal isosceles triangular rib is used on the inner surface of the outer wall of 180° curved square duct compared to curved ribless duct.

(8) It can be said that using a longitudinal isosceles triangular rib on the inner surface of outer wall of the curved square duct is reasonable.

References

