Numerical and Economical Study of Thermal Insulation in Multi-layer Wall Exposed to Real Climatic Conditions

Yousef Tamene
Lecturer
University of Batna
Algeria

Said Abboudi
Professor
University of Technology of Belfort-Montbéliard

France Cherif Bougriou
Professor
University of Batna
Algeria
An Introduction to
ATINER's Conference Paper Series

ATINER started to publish this conference papers series in 2012. It includes only the papers submitted for publication after they were presented at one of the conferences organized by our Institute every year. The papers published in the series have not been refereed and are published as they were submitted by the author. The series serves two purposes. First, we want to disseminate the information as fast as possible. Second, by doing so, the authors can receive comments useful to revise their papers before they are considered for publication in one of ATINER's books, following our standard procedures of a blind review.

Dr. Gregory T. Papanikos
President
Athens Institute for Education and Research

This paper should be cited as follows:
Numerical and Economical Study of Thermal Insulation in Multi-layer Wall Exposed to Real Climatic Conditions

Youcef Tamene
Lecturer
University of Batna
Algeria

Said Abboudi
Professor
University of Technology of Belfort-Montbéliard
France

Cherif Bougriou
Professor
University of Batna
Algeria

Abstract

In this work a numerical study of the thermal behavior of a multi-layer building wall (3 and 5 layers) is presented. The external side of the wall is subjected to the local atmospheric conditions of Algeria. The finite differences method is used to solve the transient heat transfer equations through the building wall, which is submitted to a solar heat flux, and a convective heat transfer with the environment. A sinusoidal forms of the external temperature and the solar flux were used to approach the measured data of Ouargla city (Algeria) (attitude 31°57’ N, longitude: 5° 20’E, altitude 123-315 m), during summer and winter seasons. An economic study is presented and a solution for a good thermal insulation at a lower cost is proposed.

Keywords: Heat transfer, solar flux, transient regime, economical study, multi-layer wall.
Introduction

Global warming is not currently disputed by the scientific community, according to forecasts; Earth may suffer from a global warming of 1.8 C to 4 C, if no serious measures are taken to reduce greenhouse gas emissions (Kaemmerlen 2009).

One area that consumes a lot of energy and contributes significantly to the proliferation of greenhouse gas emissions is the building sector. A decrease of the energy consumption in buildings, through improved insulation of walls will have consistent economical and environmental benefits.

The building sector is not the only concerned by the thermal insulation optimization, it appears in all domains where energy consumption is important in volume and cost: example the cold rooms (Al-Radaedeh et al 2013), transportation (road, rail, etc.), and in the conservation of foods and medical products. The insulation also has an environmental interest because the reduction of energy consumption remains a priority in the context of sustainable development.

Unfortunately, in Algeria and in many other third world countries, little importance is given to the thermal insulation; the price is the most important. In the current paper, the research of the optimal configuration for a good thermal insulation at a lower cost is presented. For this, we have developed a numerical program in FORTRAN to study the heat transfer in a multi-layer building wall under extreme atmospheric conditions of Ouargla city in the south of Algeria, during the months of January and of July.

Formulation of the Problem

We will be interested to external walls of buildings, in order to find the best configuration for a good thermal insulation, for this we have studied the case of a wall composed of three layers Figure 1 and another composed of five layers Figure 2.

Figure 1. Wall Composed of Three Layers
Figure 2. Wall Composed of Five Layers

For the solar flux and the external air temperatures, we have chosen to use the climatic data of the region of Ouargla, south of Algeria (attitude 31° 57' N, longitude 5° 20' E, altitude 123 to 315 m), during the month of July for its high temperatures and the month of January for its low temperatures.

The measured solar heat fluxes (Capderou 1986), is presented, for the two mentioned months (Table 1).

Table 1. Measured Solar Heat Fluxes.

<table>
<thead>
<tr>
<th></th>
<th>January</th>
<th></th>
<th>July</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time (h)</td>
<td>Flux φ (w/m²)</td>
<td>Time (h)</td>
<td>Flux φ (w/m²)</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>160</td>
<td>1</td>
<td>120</td>
</tr>
<tr>
<td>2</td>
<td>320</td>
<td>2</td>
<td>320</td>
</tr>
<tr>
<td>3</td>
<td>450</td>
<td>3</td>
<td>535</td>
</tr>
<tr>
<td>4</td>
<td>550</td>
<td>4</td>
<td>700</td>
</tr>
<tr>
<td>5</td>
<td>570</td>
<td>5</td>
<td>850</td>
</tr>
<tr>
<td>6</td>
<td>550</td>
<td>6</td>
<td>950</td>
</tr>
<tr>
<td>7</td>
<td>450</td>
<td>7</td>
<td>980</td>
</tr>
<tr>
<td>8</td>
<td>320</td>
<td>8</td>
<td>950</td>
</tr>
<tr>
<td>9</td>
<td>160</td>
<td>9</td>
<td>850</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>10</td>
<td>700</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>535</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>320</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14</td>
<td>0</td>
</tr>
</tbody>
</table>
An interpolation of these data leads to the following relationships:

For January month:
\[
\varphi = A' \sin \left(\frac{2 \pi t}{\tau} \right) \quad \text{for } 0 \leq t \leq 10 \, \text{h}
\]
(1)
\[
\varphi = 0 \quad \text{for } 10 \leq t \leq 24 \, \text{h}
\]
(2)

For July month:
\[
\varphi = A'' \sin \left(\frac{2 \pi t}{\tau} \right) \quad \text{for } 0 \leq t \leq 14 \, \text{h}
\]
(3)
\[
\varphi = 0 \quad \text{for } 14 \leq t \leq 24 \, \text{h}
\]
(4)

Were \(A' = 570 \) and \(A'' = 980 \)

Figures 3 and 4, show a good agreement between the proposed relationships and the measured heat flux.

Figure 3. Solar Heat Flux for July
The values of the average maximum temperature and average minimum temperature are used to find the relationship below.

\[T = A \sin \left(\frac{2\pi t}{\tau} \right) + B \quad \text{for} \quad 0 \leq t \leq 24 \]

(5)

Where \(A = 7.05 \) and \(B = 10.95 \) for January

And \(A = 8.1 \) and \(B = 36.8 \) for July

Representing this relation, we have obtained the figures 5 and 6. This corresponds to the measured values, obtained from the international website of meteorology, http://www.tutiempo.net/en/Climate/Ouargla/, (Table 2).

Figure 5. Evolution of the Temperature for July
Figure 6. Evolution of the Temperature for January

![Temperature Evolution Graph](image)

Table 2. Measured Temperatures

<table>
<thead>
<tr>
<th>Day</th>
<th>T_M</th>
<th>T_m</th>
<th>T_M</th>
<th>T_m</th>
<th>Day</th>
<th>T_M</th>
<th>T_m</th>
<th>T_M</th>
<th>T_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>19</td>
<td>2,5</td>
<td>45,8</td>
<td>29</td>
<td>17</td>
<td>16,4</td>
<td>2</td>
<td>41</td>
<td>29,5</td>
</tr>
<tr>
<td>2</td>
<td>20,4</td>
<td>2</td>
<td>43,6</td>
<td>28,4</td>
<td>18</td>
<td>13,5</td>
<td>9</td>
<td>40,4</td>
<td>28,7</td>
</tr>
<tr>
<td>3</td>
<td>20,1</td>
<td>6,4</td>
<td>44</td>
<td>30</td>
<td>19</td>
<td>15,5</td>
<td>7</td>
<td>38,9</td>
<td>25,8</td>
</tr>
<tr>
<td>4</td>
<td>17,5</td>
<td>6</td>
<td>46</td>
<td>28,4</td>
<td>20</td>
<td>16</td>
<td>4,5</td>
<td>40,6</td>
<td>24,4</td>
</tr>
<tr>
<td>5</td>
<td>19,6</td>
<td>1</td>
<td>47</td>
<td>31,8</td>
<td>21</td>
<td>16,6</td>
<td>4</td>
<td>44</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>24</td>
<td>6</td>
<td>48,3</td>
<td>31,2</td>
<td>22</td>
<td>13,4</td>
<td>7,4</td>
<td>43,8</td>
<td>26</td>
</tr>
<tr>
<td>7</td>
<td>17,8</td>
<td>5</td>
<td>48,6</td>
<td>32</td>
<td>23</td>
<td>16,7</td>
<td>7,5</td>
<td>37,5</td>
<td>26,2</td>
</tr>
<tr>
<td>8</td>
<td>18,2</td>
<td>1,6</td>
<td>48,3</td>
<td>32,5</td>
<td>24</td>
<td>20</td>
<td>4,7</td>
<td>37,7</td>
<td>24,5</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td>1</td>
<td>48,3</td>
<td>33</td>
<td>25</td>
<td>21,1</td>
<td>4</td>
<td>41,6</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>17,4</td>
<td>1</td>
<td>48</td>
<td>31,1</td>
<td>26</td>
<td>19,3</td>
<td>4,3</td>
<td>45,5</td>
<td>24,4</td>
</tr>
<tr>
<td>11</td>
<td>16,5</td>
<td>0</td>
<td>46,5</td>
<td>30</td>
<td>27</td>
<td>20</td>
<td>4,3</td>
<td>45</td>
<td>29</td>
</tr>
<tr>
<td>12</td>
<td>16,2</td>
<td>0,1</td>
<td>47</td>
<td>29,2</td>
<td>28</td>
<td>16,8</td>
<td>7</td>
<td>46</td>
<td>25</td>
</tr>
<tr>
<td>13</td>
<td>16,5</td>
<td>0</td>
<td>48</td>
<td>29,9</td>
<td>29</td>
<td>20</td>
<td>6,2</td>
<td>46</td>
<td>28,5</td>
</tr>
<tr>
<td>14</td>
<td>19,5</td>
<td>0,4</td>
<td>49</td>
<td>30,1</td>
<td>30</td>
<td>15,3</td>
<td>6,5</td>
<td>46,8</td>
<td>29,4</td>
</tr>
<tr>
<td>15</td>
<td>20,5</td>
<td>0,6</td>
<td>49,6</td>
<td>31</td>
<td>31</td>
<td>17,8</td>
<td>6,5</td>
<td>45</td>
<td>30</td>
</tr>
<tr>
<td>16</td>
<td>20</td>
<td>2</td>
<td>43,5</td>
<td>31,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Monthly means: 18 3,9 44,9 28,7

T_M: Maximal temperature (°C)

T_m: Minimal temperature (°C)
Numerical Resolution

Assumptions
Heat transfer in the wall is one dimensional and unsteady.
- Physical properties are constants.
- No heat sources in the wall.

So, the heat transfer in the multilayer wall is governed by the following equations:

\[\alpha_i \frac{\partial^2 T_i}{\partial x^2} = \frac{\partial T_i}{\partial t}, \quad l_{i-1} \leq x \leq l_i, \quad t > 0, \quad i = 1,...,5 \]

(6)

Where:

\[\alpha_i = \frac{T_i}{\rho_i C_i}, \quad l_0 = 0, \quad l_i = l_{i-1} + e_i, \quad L = l_5 \]

And this initial and boundary conditions

Boundary conditions

\[-\lambda_i \frac{\partial T_i}{\partial x} = h_i (T_{f_1} - T_i) \quad x = 0 \]

(7)

\[\lambda_i \frac{\partial T_i}{\partial x} = \lambda_{i+1} \frac{\partial T_{i+1}}{\partial x}, \quad T_i = T_{i+1} \quad x = l_i, \quad i = 1,4 \]

(8)

\[-\lambda_i \frac{\partial T_i}{\partial x} = h_2 (T_3 - T_{f_2}) - \beta \varphi(t) \quad x = l_5 \]

(9)

where \[\beta = 0.3 \]

Initial conditions:

\[T_i = T_0 \quad \text{for} \quad t = 0 \quad \text{and} \quad 0 \leq x \leq l_5 \]

(10)

The resolution of the system of equations (6) with boundary conditions (7), (8), (9) and initial conditions (10) is performed by finite differences method according to the Crank-Nicolson scheme (Gerald 1978). At each time, the Tri Diagonal Matrix Algorithm (TDMA) (Boumahrat and Gourdi 1993) is used to solve the obtained algebraic system.

The simulated results are performed for commonly materials used in building constructions. Their physical properties (the specific heat \(C_p \), the mass density \(\rho \) and the thermal conductivity \(\lambda \)) are presented in Table 3, (Tamene et al 2011), (Bekkouche et al 2003).

Table 3. Physical Characteristics

<table>
<thead>
<tr>
<th>Material</th>
<th>Brick</th>
<th>Mortar</th>
<th>Plaster</th>
<th>Air</th>
<th>Polystyrene</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho) (kg/m³)</td>
<td>1900</td>
<td>2050</td>
<td>825</td>
<td>1.2</td>
<td>29</td>
</tr>
<tr>
<td>(C_p) (j/kg.k)</td>
<td>920</td>
<td>950</td>
<td>1000</td>
<td>1008</td>
<td>1850</td>
</tr>
<tr>
<td>(\lambda) (w/km)</td>
<td>1.11</td>
<td>1.96</td>
<td>0.25</td>
<td>0.026</td>
<td>0.04</td>
</tr>
</tbody>
</table>
The initial and boundary conditions used are:
\[h_1 = 5 \text{ W/m}^2\text{°C}, \quad h_2 = 10 \text{ W/m}^2\text{°C}, \quad T_{j1} = 25 \text{ °C}, \quad T_0 = T_m \]

Results and Discussion

To verify the program we have compared the results obtained by calculating the temperatures at the interfaces in the steady state with those calculated by the program in the case of a wall composed with five layers (configuration 2). The solar flux is made zero, the indoor and outdoor air temperature are taken constants.

Numerically, the number of steps used in each layer is as follows:

\[N_1 = 6, \quad N_2 = 30, \quad N_3 = 12, \quad N_4 = 15 \text{ and } N_5 = 8 \]

At steady state, and based on the relationship of the flux we have:

\[\phi = \frac{T_{j1} - T_{j2}}{R} \text{ with } T_{j1} = 25\text{°C and } T_{j2} = 45\text{°C} \]

\[R = R_1 + R_2 + R_3 + R_4 + R_5 + R_6 + R_7 = \frac{1}{h_1} + \frac{e_1}{\lambda_1} + \frac{e_2}{\lambda_2} + \frac{e_3}{\lambda_3} + \frac{e_4}{\lambda_4} + \frac{e_5}{\lambda_5} + \frac{1}{h_2} \]

\[T_{i+1} = T_i - \phi R \text{ were } i = 6 \text{ and } T_0 = T_{j1}, \quad T_7 = T_{j2} \]

The interface temperatures obtained at steady state are the same as predicted analytically, figure 7.

Figure 7. Evolution of the Temperature through the Multilayer Wall

Several configurations of multi-layer materials (Table 4) were analyzed to find the best material providing better thermal insulation with a lower cost.
Table 4. Different Configurations

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Configuration 1</th>
<th>Configuration 2</th>
<th>Configuration 3</th>
<th>Configuration 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>2 cm plaster</td>
<td>2 cm plaster</td>
<td>2 cm plaster</td>
<td>2 cm plaster</td>
</tr>
<tr>
<td>e_2</td>
<td>10 cm brick</td>
<td>10 cm brick</td>
<td>30 cm brick</td>
<td>15 cm brick</td>
</tr>
<tr>
<td>e_3</td>
<td>4 cm air</td>
<td>4 cm polys</td>
<td>2 cm mortar</td>
<td>2 cm mortar</td>
</tr>
<tr>
<td>e_4</td>
<td>15 cm brick</td>
<td>15 cm brick</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e_5</td>
<td>2 cm mortar</td>
<td>2 cm mortar</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

For all cases, the internal temperatures calculated for July month are presented in figures 8 and 9. For each configuration, the domain variation of the temperature is:
- Configuration 1: $26.75°C \leq T \leq 27.15°C$
- Configuration 2: $27.45°C \leq T \leq 28.05°C$
- Configuration 3: $30.75°C \leq T \leq 33°C$
- Configuration 4: $27.5°C \leq T \leq 35°C$

Figure 8. The Temperature of the Internal Side (1st and 2nd Configuration)
Since, in summer the internal temperature must be as low as possible relative to the external, so we note that for a good thermal insulation, in summer the first configuration is better than the second, the third and the fourth.

Similarly, the results of January are presented in figures 10 and 11

However, we see that the temperature change is as follows:

Configuration 1: \(23.75°C \leq T \leq 24.5°C\)
Configuration 2: \(23.5°C \leq T \leq 24°C\)
Configuration 3: \(21.5°C \leq T \leq 22.75°C\)
Configuration 4: \(19°C \leq T \leq 22.75°C\)
In winter the internal temperature must be as high as possible relative to the external, so we note that for a good thermal insulation, in winter the first configuration is better than the second, the third and the fourth.

Economical Study

From the thermal analysis presented above, we propose an economic analysis in terms of cost of the four configurations. The materials used are brick and polystyrene their prices are shown in Table 5, for the internal and external layers it is the same for the four configurations.

<table>
<thead>
<tr>
<th>Table 5. Material Prices (120 DA = 1 Euro).</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Materials</td>
<td>Dimensions (cm)</td>
<td>Price (DA)</td>
</tr>
<tr>
<td>Brick 12</td>
<td>30x20x15</td>
<td>0.25</td>
</tr>
<tr>
<td>Brick 8</td>
<td>30x20x10</td>
<td>20</td>
</tr>
<tr>
<td>Polystyrene</td>
<td>200x100x4</td>
<td>300</td>
</tr>
</tbody>
</table>

The number of brick required, for a surface wall (4 m x 3 m), is:

\[M_1 = \frac{12}{0.3 \times 0.2} = 200 \]

Then the cost is: \(P_1 = 30 M_1 = 6000 \text{ DA} \)

And the cost of a double wall of brick is: \(P_2 = 2 P_1 = 12000 \text{ DA} \)

For a wall thickness of 10 cm, the number of bricks required is:

\[M'_3 = \frac{12}{0.3 \times 0.2} = 200 \]

Then the cost is: \(P'_3 = 20 M'_3 = 4000 \text{ DA} \)
The number of the polystyrene plate required is: \(M''_4 = \frac{12}{1 \times 2} = 6 \)

And the price of polystyrene is: \(P_4 = 300 \times M''_4 = 1800 \text{ DA} \)

So, the cost of double wall of 15 cm and 10 cm of brick spaced a 4 cm layer of polystyrene is: \(P''_5 = P''_1 + P''_3 + P_4 = 11800 \text{ DA} \)

And the cost of double wall of 15 cm and 10 cm of brick spaced a 4 cm layer of air is: \(P''_6 = P''_1 + P_3 = 6000 + 4000 = 10000 \text{ DA} \)

A summary of the prices of the four configurations in euro is shown in Table 6.

Table 6. Configurations Prices

<table>
<thead>
<tr>
<th>Configuration</th>
<th>First (Euro)</th>
<th>second (Euro)</th>
<th>third (Euro)</th>
<th>fourth (Euro)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price</td>
<td>83.33</td>
<td>98.33</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>Price per m²</td>
<td>6.94</td>
<td>8.19</td>
<td>8.33</td>
<td>4.16</td>
</tr>
</tbody>
</table>

From a viewpoint of heat insulation and price, the first configuration is better than the second and third. Note that the fourth configuration is the cheaper but it ensures the poor thermal insulation.

Conclusion

A numerical study of the thermal behavior of multi-layer wall for four configuration used in buildings is presented. The real climatic conditions (the measured solar flux and the temperature of external air) of Ouargla town are used to find the better thermal insulation in winter and summer, with the lower cost. An economic study has been presented and shown that it is possible to have a good thermal insulation with a lower price. Therefore and to have a good thermal insulation with a cheaper cost we recommend to use the first configuration, the economy is made also in long-term on energy consumption and the environment protection.

References

http://www.tutiempo.net/en/Climate/Ouargla/